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Abstract: In the current era marked by increased consumer awareness and advancements in food technology, 
the quality of turkey meat has emerged as a focal point, particularly in promoting healthy diets for children 
and adolescents. As parents seek nutritious and appealing food options for younger consumers, understanding 
protein denaturation becomes critical for enhancing meat texture, juiciness, and overall sensory experience. 
This study explores the application of Computational Fluid Dynamics to predict and optimise the denaturation 
of turkey meat proteins during thermal processing. By utilising CFD, this research models the heat and mass 
transfer dynamics involved in cooking turkey meat, providing insights that can optimise the cooking conditions 
to preserve nutritional value while improving the sensory qualities. The results indicated optimal thermal 
treatment conditions – 161.28°C, 61.31% humidity, and 17.58 rpm fan speed. Laboratory validations confirmed 
that the predicted denaturation of myosin and actin aligned closely with experimental results, underscoring 
the efficacy of CFD as a predictive tool. Moreover, no statistically significant discrepancies were observed 
in collagen denaturation between the predicted and experimental results (P >0.05), further demonstrating 
the accuracy of the model. Overall, this work illustrates the potential of CFD in food science, enabling 
the development of high-quality, safe, and sustainable turkey meat products that fulfil the nutritional needs 
of children and adolescents. 

Key words: �Computational Fluid Dynamics (CFD), Protein Denaturation, Turkey Meat Processing, Healthy 
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INTRODUCTION

Understanding the quality of turkey meat is crucial for promoting healthy diets, particularly for children 
and adolescents. Turkey meat is valued for its lean protein content and health benefits, making it a recommended 
component of balanced diets for younger consumers. However, achieving high standards of nutritional quality, 
sensory appeal, and safety in turkey meat requires an in-depth understanding of the thermal processes that 
influence protein denaturation during cooking. This phenomenon significantly impacts the meat texture, juiciness, 
and overall appeal, which are critical factors in encouraging healthier eating habits [1–3].

Computational Fluid Dynamics (CFD) offers an innovative approach to modelling and optimising the thermal 
processing of turkey meat. By simulating heat and mass transfer, CFD provides insights into how temperature 
and cooking time affect protein structure and quality. This technology enables precise control over heat distribution 
and minimising protein degradation while preserving nutritional value and sensory qualities [4, 5]. Optimising 
these processes not only ensures high-quality meat products but also aligns with dietary guidelines for children 
and adolescents by maintaining digestibility and reducing the content of undesirable compounds [6]. 

CFD also supports sustainability and food safety initiatives. By optimising the cooking conditions, it reduces 
energy consumption, minimises waste, and ensures uniform cooking, which helps eliminate the risks associated 
with undercooked meat while maintaining its sensory attributes [7, 8]. These advancements demonstrate 
the potential of CFD to enhance the quality and healthfulness of turkey meat, contributing to broader goals 
of promoting sustainable and nutritious food options for younger generations [9, 10].

This study aims to explore the application of CFD in predicting and optimising the denaturation process 
of turkey meat proteins during thermal processing. It also examines potential benefits of this technology 
in enhancing food safety, sustainability, and energy efficiency, supporting dietary and environmental objectives.

MATERIAL AND METHODS

The experiment was carried out in several phases:
•	 in the first step, an experimental model was developed using the Design-Expert program,
•	 the second phase was a simulation of the heat treatment process using CFD,
•	 the third stage was roasting optimisation using RSM (response surface methodology),
•	 the final stage was verification of the predicted results using laboratory tests.

Experiment design
Three design variables – temperature, humidity, and fan rotation speed – were chosen as quantitative independent 
factors to evaluate their effects on the denaturation levels of myosin, collagen, actin, and cooking loss. These variables 
were tested in the following ranges: temperature from 120°C to 200°C, humidity from 0% to 75%, and fan rotation 
speed from 0 to 1,400 rpm. The parameter ranges were established through a combination of literature review 
and preliminary experiments [4]. To assess the outcomes, the Design-Expert version 11 software (Stat-Ease, Inc., 
USA) was employed, generating 20 experimental runs (as shown in Table 1). A quadratic equation was used to model 
the interactions between variables and responses, with the model’s central point repeated six times for validation.

Table 1. Experimental design used for CFD simulations 

Run
Heat treatment parameters

Run
Heat treatment parameters

Temperature 
[°C]

Humidity 
[%]

Fan rotation 
[rpm]

Temperature 
[°C]

Humidity 
[%]

Fan rotation 
[rpm]

1 120 0 0 11 160 0 700
2 200 0 0 12 160 75 700
3 120 75 0 13 160 37.5 0
4 200 75 0 14 160 37.5 1,400
5 120 0 1,400 15 C 160 37.5 700
6 200 0 1,400 16 C 160 37.5 700
7 120 75 1,400 17 C 160 37.5 700
8 200 75 1,400 18 C 160 37.5 700
9 120 37.5 700 19 C 160 37.5 700
10 200 37.5 700 20 C 160 37.5 700

C – central points
Source: own elaboration
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Heat treatment process using CDF simulation. CFD Description and Implementation
The Ansys v.19.0 software was utilised to develop a three-dimensional model of the testing apparatus and to simulate 
the thermal treatment process. This simulation followed the methodology described by Szpicer et al. (2022), 
with some modifications made for the study [11]. The scheme of the studied system is shown in Figure 1. Key 
factors affecting the thermal properties of food products include their fundamental composition, which consists 
of the amounts of protein, fat, carbohydrates, and ash. The conduction coefficient (λ) and specific heat (Cp) of the raw 
material are critical in determining these properties. The basic composition of turkey breast meat can vary due 
to factors such as age, developmental stage, and activity levels [12–15]. The thermophysical properties of turkey 
meat, such as the thermal conductivity (λ), specific heat (Cp), and density, were treated as temperature-dependent 
variables. These properties were calculated using the equations proposed by Choi and Okos (1986), with adjustments 
based on the meat’s composition. Furthermore, water evaporation during cooking was modelled using Fick’s law 
of diffusion, and its impact on the local thermal conductivity and specific heat was incorporated into the simulation [16].  

Figure 1. Scheme of the studied system
Source: own elaboration.

For the simulation, input data were sourced from the composition analysis conducted by Gantner et al. (2017), which 
reported the following values: 77.03 ±0.21% water, 1.98 ±0.49% fat, 19.03 ±0.23% protein, 1.46 ±0.45% connective 
tissue, and 1.61 ±0.03% ash [17]. The objective of this research was to determine the thermal penetration coefficient 
to calculate the denaturation extent of individual proteins and the resulting cooking loss. Temperature and enthalpy 
data for each protein type were gathered using differential scanning calorimetry (DSC): myosin at 61.5°C, collagen 
at 67°C, and actin at 80.5°C, with corresponding enthalpies of 3.85 J/gK, 3.84 J/gK, and 3.93 J/gK, respectively [15]. 
For the simulation, a 3D model of a combi steamer (CPE 110, Convect-Air Professional, Küppersbusch, Germany) 
was created following the methodology specified by Szpicer et al. (2024) [18]. The model incorporated a heat source 
(heater), fan, steam generator, and GN container rack. A cube of turkey breast meat (50 × 50 × 50 mm) was placed 
on a GN ½ tray (530 × 325 × 20 mm) inside the oven. The simulated roasting duration was established at 2,000 
seconds, assuming the turkey breast meat had a homogeneous microstructure and isotropic properties regarding 
mass and heat, without accounting for transport and fat loss. The forced convection was characterised by the global 
heat transfer coefficient, and water diffusion was modelled using Fick’s law of diffusion with a global diffusion 
coefficient. Cooking loss from water squeezing was considered, while thermal contraction and shape changes were 
neglected, keeping the sample volume constant throughout the roasting process [10, 11 ,19].
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Numerical Model

Analysed space
The model comprised three distinct domains. The initial domain encompassed the fluid surrounding the sleeve- 
-shaped rotor, which operated at a designated rotational speed. This configuration facilitated the simulation 
of the rotor’s rotation within the chamber, with the blades represented as surfaces. The second domain represented 
the chamber area where air circulation was induced by the rotating rotor. Lastly, the third domain included two 
solid components: the sample insert and the support plate.

Mesh
A hexa structural mesh was applied to the rotor space, incorporating surface compaction for the rotor blades to enhance 
the representation of the flow. For the chamber, a tetra/prism mesh was utilised, with prismatic elements strategically 
placed, such as along the meat and plate walls, for heat transfer analysis. A hexa mesh was chosen for the turkey breast 
meat and plate. The model specifications were as follows: rotor space – 152,880 hexes and 177,702 nodes; chamber – 
339,867 tetras, 100,385 prisms and 120,714 nodes; meat and plate – 64,372 hexes and 73,325 nodes.

Materials
In the computations, the materials used included a blend of air and water vapour, turkey meat as the used material, 
and stainless steel (AISI 304). The initial temperature of the solids was set at 23°C.

Material data

Turkey breast meat
The determination of the conduction coefficient (λ) relied on Eq. (1) following the description by Choi and Okos, 
considering the essential composition of the sample [16].

λ = 0.205xc + 0.20xp + 0.175xf + 0.135xa + 0.61xw	 (1)

where:
x – mass fraction of the food ingredient,
indexes:
c – carbohydrates,
p – proteins,
f – fat,
a – ash,
w – water.

The computation of specific heat (Cp) was derived from Eq. (2) following the explanation provided by Singh 
and Heldman, considering the fundamental composition of the samples [20].

Cp = 1.424xc + 1.549xp + 1.675xf + 0.837xa + 4.187xw	 (2) 

where:
x – mass fraction of the food ingredient, 
indexes:
c – carbohydrates,
p – proteins,
f – fat,
a – ash,
w – water.

Stainless steel (AISI 304)
Conduction coefficient (λ) – 60.5 W/mK
Specific heat (Cp) – 434 J/kgK.
Air – Air Ideal Gas:
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The ideal gas equation of state can be applied for the computation of different gas properties according to Eq. (3).

pV = nRT	 (3)

where:
p – absolute pressure of the gas,
V – volume of the gas,
n – amount of substance of gas (also known as number of moles),
R – ideal, or universal, gas constant, equal to the product of the Boltzmann constant and the Avogadro constant,
T – absolute temperature of the gas.

Water vapour – Redlich-Kwong Dry Steam:
Pressure and molar volume of dry steam were calculated using the Redlich–Kwong equation (Eq. 4) 

to accurately model heat and mass transfer conditions in the CFD simulations [21]:

 m m m

RT ap = 
V b TV V b


 

	 (4)

where:
p – gas pressure,
R – gas constant,
T – temperature,
Vm – molar volume (V/n),
a – constant that corrects for the attractive potential of molecules,
b – constant that corrects for the volume.

The gas used in the experiment was a blend of steam and air, with the mixture’s composition determined by 
the mass fractions of its individual components.

Humidity

   st
st

T T11.344 1 3.49149T* 7 3 *st st T
st

T Tloge 7.90298 1 5.02808log 1.3816 10 10 1 8.1328 10 10 1 loge
T T

                          
   

	 (5)

where:
log refers to the logarithm in base 10,
e* – saturation water vapour pressure (hPa),
T – absolute air temperature in Kelvins,
Tst – steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K),
e*st – e* at the steam-point pressure (1 atm = 1,013.25 hPa).

Using Eq. (6), the mass fraction of water vapour in the mixture was established by considering the saturation 
pressure at the provided temperature and the designated humidity.

PsX 6.222
1013.25 Ps




	 (6)

2
XgH O
X+1



Definition of the solver
The SST turbulence model solver parameters were configured with a convergence criterion of 10e-4 and 600 
iterations. Before finalising the mesh size and solver parameters, a mesh independence study was conducted 
to ensure the robustness of the model. Several mesh configurations were tested, gradually increasing the number 
of elements, while observing the impact on the key output parameters, such as the temperature distribution, heat 
transfer coefficients, and protein denaturation levels. The selected mesh (152,880 hex elements for the rotor space, 
339,867 tetrahedral elements for the chamber, and 64,372 hex elements for the meat and plate) provided a balance 
between computational cost and accuracy. Further refinement resulted in negligible changes to the output 
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parameters (<1%). In addition, an adaptive time-stepping approach was configured, with a range of 0.1 to 10 
seconds and 2–5 iterations per step. This setup was chosen to address the transient nature of the heat treatment 
process. Smaller time steps were applied during periods of rapid temperature changes, such as the initial heating 
phase, while larger steps were used when temperature gradients had stabilised. This approach ensured numerical 
stability, accurate results, and optimised computational efficiency. 

The solver work type was designated as Double Precision. The choice of the Shear Stress Transport (SST) 
turbulence model was based on its flexibility, effective handling of boundary layers, relatively low computational 
complexity, and widespread use in the field of CFD. For the transient state solver definition, the adaptive time 
step was established with 2–5 iterations per step, a time step range of 0.1–10 seconds, and a process duration 
of 2,000 seconds.

Validation of the Computational Model
In this study, a detailed validation of the Computational Fluid Dynamics (CFD) model was conducted to confirm 
its reliability in predicting temperature distributions within turkey breast samples during thermal processing. 
This step was crucial for ensuring the model’s ability to accurately simulate protein denaturation, which is driven 
by temperature changes.

Experimental Setup
To validate the model, turkey breast samples (50 × 50 × 50 mm) were thermally treated in a combi-steam 
oven (Küppersbusch CPE-110, Germany) at: 160°C, 37.5% humidity, and 1,400 rpm fan speed. Temperature 
measurements were taken using Type-K thermocouples (Ellab TrackSense Pro, Denmark) placed at three key 
locations within the sample:
•	 Core: Geometric centre of the meat cube.
•	 Midpoint: Halfway between the core and the surface.
•	 Surface: Outermost layer of the sample.

Measurements were recorded at 10-second intervals over a 2,000-second roasting period. Three biological 
replicates were conducted to ensure repeatability and reliability.

Predicted and Measured Temperature Comparisons
The CFD model provided temperature predictions at the same locations and time points as the experimental 
measurements. Table 2 summarises the predicted and experimentally measured temperatures (±SD) at 500, 1,000, 
1,500, and 2,000 seconds.

Table 2. Validation of the Computational Model

Time [s]
Core temperature 

[°C]
Midpoint temperature 

[°C]
Surface temperature 

[°C]
CFD Prediction Experimental CFD Prediction Experimental CFD Prediction Experimental

500 42.3 ±1.1 43.0 ±1.4 58.7 ±0.9 57.8 ±1.3 68.2 ±1.2 68.5 ±1.6
1,000 57.5 ±1.3 56.9 ±1.2 69.4 ±1.0 70.2 ±1.5 79.3 ±1.4 78.6 ±1.7
1,500 68.7 ±1.2 68.4 ±1.5 76.3 ±1.1 77.0 ±1.4 85.5 ±1.3 85.1 ±1.8
2,000 74.2 ±1.0 74.5 ±1.3 81.6 ±0.8 81.9 ±1.6 89.1 ±1.5 88.7 ±1.7

Statistical Validation
A Student’s t-test was performed to evaluate the differences between the predicted and measured temperatures 
at each location and time point. The results showed no statistically significant differences (P >0.05) between 
the predicted and experimental temperatures, confirming the model’s accuracy. The maximum observed error 
was less than 2%, which is within an acceptable range for CFD applications in food processing. The validation 
results demonstrate that the CFD model provides highly accurate predictions of temperature distributions during 
thermal treatment. The alignment between the predicted and experimental temperatures at all measured points 
confirms the model’s capability to capture the heat transfer dynamics and their impact on protein denaturation. 
The core temperature predictions exhibited minimal deviation, with a maximum difference of 0.9°C at 500 
seconds. The surface temperature predictions consistently matched the experimental measurements within 0.5°C, 
indicating precise modelling of boundary heat transfer.
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Stages of CFD Analysis
The CFD analysis was conducted in two phases, necessitated by the fluctuating output parameters during heat 

treatment and the model’s size. The initial stage encompassed a steady-state analysis, yielding actual heat transfer 
coefficients on the surfaces of the meat sample and the GN container. In the subsequent phase, the outcomes 
from the first stage were used in modelling the solids (meat and GN container), and transient simulations were 
executed to capture the temperature variations of the samples over time. The initial phase focused on determining 
penetration coefficients, while the second phase involved simulating protein denaturation and water loss.

Roasting optimisation using RSM
In this experiment, the influence of three factors on the denaturation of myosin, collagen and actin, and mass loss 
was examined. The variables considered were the temperature within the furnace, air stream speed (fan speed), 
and humidity level. To interpret and characterise the relationship between these variables and the measured 
parameters, a quadratic equation was used. The central point was replicated six times in the model. Using Design-
Expert version 11 (Stat-Ease, Inc., USA), the heat treatment was optimised concerning the denaturation of myosin, 
collagen and actin, and the cooking loss based on the model. The final step involved optimising the thermal 
treatment parameters using a mathematical model and experimental validation of the calculated response values.

Verification of the predicted results using laboratory tests
Materials
Turkey breast fillets (Pectoralis major) for analysis were obtained from a BIG 6 turkey acquired from 
a commercial market (INDYKPOL S.A., Olsztyn, Poland). The fillets were taken for further processing (1,954 
±174 g). The fillets were transported to the laboratory in cooling boxes, maintaining chilled conditions at 4±1°C. 
Cube-shaped samples (50 × 50 × 50 mm) were cut from turkey breasts according to Figure 2.

Figure 2. Preparation of turkey sample (50 × 50 × 50 mm) from breast fillets (Pectoralis major) for verification stage
Source: own elaboration.

Basic composition evaluation
The basic composition of turkey breast meat samples was evaluated using the near-infrared (NIR) spectrometry 
method as outlined by Stelmasiak et al. (2019) [22]. The analysis was conducted using a NIRFlex N-500 spectrometer 
with a solids module (Büchi Labortechnik AG, Switzerland) in reflectance mode, covering a spectral range 
of 12,500–4,000 cm−1, and using a Büchi Art. N. N555-501. This analysis occurred at an accredited NIR laboratory 
(Polish Centre for Accreditation FT-NIR – Accreditation No. AB 1670). Homogenised meat samples, each weighing 
100 g, were placed on a Petri dish and subjected to measurements. The assessment of the basic composition, 
encompassing water, fat, proteins, CTP (collagen protein total) and ash, was conducted in triplicate for each sample 
to ensure the precision and reliability of the results (three technical replications). Measurements were taken for each 
of the three independent biological replications (three different batches) involving distinct raw materials.
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Heat treatment
The turkey meat cubes were thermally processed in accordance with the optimised parameters based on RSM data 
in a Küppersbusch CPE-110 combi-steam oven (Küppersbusch Convect-Air Professional, Germany). The process 
parameters were controlled using wireless temperature and humidity recorders (TrackSense Pro; Ellab, Denmark).

Protein denaturation level
Protein denaturation levels were assessed through differential scanning calorimetry (DSC 1 from Mettler Toledo, 
Schwerzenbach, Switzerland) [11]. Prior to the experiment, the device underwent calibration with pure zinc 
and indium. Both untreated and heat-treated samples were examined. A BÜCHI B-400 homogeniser was used for 
the uniform mixing of each sample. Subsequently, 10.0 ±0.1 mg of meat samples were deposited into a standard 
40 µl aluminium pan (No.: ME-51119870) and hermetically sealed with an aluminium lid (No.: ME-51119871) 
using a Mettler Toledo Crucible Sealing Press.

Under an argon atmosphere (100 cm3/min), the DSC analysis was conducted at a rate of 10°C/min (β) 
within the temperature range of 10°C to 100°C. The resultant thermograms were scrutinised using the STARe 
software to identify the initial (Ton), maximum (Tmax), and final (Tend) temperatures, along with the enthalpy (ΔH). 
The degree of denaturation for myosin, collagen, and actin was ascertained based on the thermograms, using 
the methodology outlined by Agafonkina et al. (2019) [15]. The denaturation percentage for each protein was 
calculated by comparing the enthalpy of denaturation between the untreated and heat-treated samples, using 
equation (7).

raw roasted

raw

H HDenaturation % ×100
H
 	 (7)

where:
Hraw – enthalpy of protein denaturation in raw meat prior to heat treatment (J/g),
Hroasted – enthalpy of protein denaturation in roasted meat following heat treatment (J/g).

The evaluation of the degree of denaturation was conducted thrice for each sample to assure the precision 
and dependability of the outcomes (three technical replicates). Measurements were carried out across three 
independent biological replicates (three separate batches) using distinct raw materials for each.

Protein Denaturation Modelling Based on Temperature Predictions
To establish the connection between the temperature predictions from the Computational Fluid Dynamics (CFD) 
simulations and the extent of protein denaturation in the turkey breast meat, a detailed modelling approach was 
implemented. This section describes the methodology used to calculate the protein denaturation based on spatial 
and temporal temperature distributions.

Temperature Thresholds for Protein Denaturation
The Differential Scanning Calorimetry (DSC) data were used to identify the denaturation thresholds for 
the primary proteins in the turkey meat. The specific denaturation temperatures (±SD) and enthalpy values (ΔH) 
used in the model were as follows (Table 3):

Table 3. Denaturation thresholds and enthalpy changes (ΔH) for key turkey meat proteins 

Protein Denaturation Onset 
[T, °C]

Enthalpy Change 
[ΔH, J/g]

Myosin 61.5 ±0.8 3.85 ±0.12
Collagen 67.0 ±0.1 3.84 ±0.15
Actin 80.5 ±0.9 3.93 ±0.10

Source: own elaboration.

These thresholds represent critical points at which the respective proteins undergo irreversible structural 
changes, impacting the texture and functionality. The enthalpy data were integrated into kinetic equations to model 
the protein denaturation.
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Spatial and Temporal Modelling of Protein Denaturation
1.	 Temperature Data from CFD Simulations:

○○ The CFD model provided a three-dimensional grid of the turkey meat sample, with each grid element 
representing a localised region.

○○ For each grid element, the transient temperature profile was extracted over the simulated roasting period 
(2,000 seconds).

2.	 Kinetic Model for Protein Denaturation:
○○ Protein denaturation was modelled using a first-order kinetic equation:

dα  = k(T) (1 α)
dt

⋅ −

where:
α(t) – degree of denaturation at time t,
k(T) – temperature-dependent rate constant, calculated using the Arrhenius equation:

aE
RTk(T) A e
−

= ⋅
with:
A – pre-exponential factor [1/s],
Ea – activation energy [J/mol],
R – universal gas constant (8.314 J/mol·K),
T – absolute temperature [K].

3.	 Spatial Variation in Denaturation:
○○ Using the temperature data for each grid element, the degree of denaturation was calculated iteratively for 

each time step.
○○ The enthalpy changes (ΔH) associated with each protein were incorporated into the calculations to adjust 

for localised thermal effects.
○○ The resulting denaturation values were mapped across the 3D grid to visualise the spatial variation of pro-

tein denaturation within the meat sample.
4.	 Aggregation of Results:

○○ The overall denaturation of each protein was determined by integrating the localised denaturation values 
across the entire sample. This approach ensured that spatial heterogeneity in heat transfer and protein 
response was accounted for.

Validation of Predicted Denaturation
Laboratory experiments were conducted to validate the predicted protein denaturation levels. Differential Scanning 
Calorimetry (DSC) was employed to measure the actual denaturation percentages for myosin, collagen, and actin 
in the samples subjected to the optimised roasting parameters. Table 4 compares the predicted and experimental 
results for protein denaturation and cooking loss:

Table 4. Comparison of CFD-predicted and experimentally measured protein denaturation and cooking loss

Parameter Predicted value [±SD] Experimental value [±SD] P-value
Myosin Denaturation [%] 99.41 ±1.03 99.18 ±0.72 >0.05
Collagen denaturation [%] 88.37 ±1.02 87.67 ±0.75 >0.05
Actin denaturation [%] 20.70 ±0.78 19.21 ±0.32 >0.05

Source: own elaboration.

The predicted values from the CFD model showed strong agreement with the experimental results, with no 
statistically significant differences (P >0.05) for all parameters. These results confirm the reliability of the model 
in predicting protein denaturation and cooking loss during thermal processing.

Cooking Loss
For the assessment of cooking loss, the sample underwent weighing before entering the oven and promptly after 
extraction. The percentage of cooking loss was computed by evaluating the disparity in mass between the raw 
and heat-treated meat using Equation (8).
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 raw roasted

raw

M M
Cooking loss% ×100

M


 	 (8)

where:
Mraw – mass of the raw sample prior to heat treatment (g),
Mroasted – mass of the roasted sample following heat treatment (g).

The evaluation of the cooking loss was conducted three times for each sample to guarantee the accuracy 
and reliability of the findings (three technical replicates). Measurements were carried out across three independent 
biological replicates (three distinct batches), using varied raw materials for each batch.

Statistics
The experimental design was executed using the Design-Expert v. 11 software (Stat-Ease, Inc., USA), 
as outlined in Table 1. An examination of the impact of temperature, humidity, and convection intensity 
on individual responses was conducted following the programmed experimental model. The significant terms 
within this model were identified through analysis of variance (ANOVA) for each response, assessing a lack 
of fit, coefficients of determination (R2), and coefficients of variation (CV) to ensure model accuracy. 3D charts 
were constructed based on the analysis results, and quadratic equations describing the model were used 
for further studies.

In the prediction analysis using RSM, the maximum desirable degree of myosin and collagen denaturation was 
determined, with the minimisation of actin denaturation and mass loss selected as parameters.

The final stage of the experiment involved optimising and validating the heat treatment technology. Predicted 
response values were then compared with experimentally determined values. Instrumental technique analyses 
were conducted using raw materials from various production batches in three independent biological replicates. 
Following optimisation, Student’s t-test at P ≤0.05 was applied to ascertain differences between two sets 
of values: predicted and measured properties in the laboratory experiments. Statistical analyses were performed 
using the Design-Expert software, and the results were presented as mean (X̄) ± standard error (SD).

RESULTS AND DISCUSSION

Table 5 summarises the regression coefficients of the quadratic polynomial models predicting myosin, collagen 
and actin denaturation, and cooking loss. The models exhibited high adequacy (R² = 0.746–0.997). Myosin, 
collagen, and actin denaturation achieved the highest R² values (0.933, 0.984, 0.997), while cooking loss was 
the least predictive (R² = 0.746). Finding all lack-of-fit p-values confirmed satisfactory model fits (p >0.05).

Table 5. Regression coefficients of the predicted quadratic polynomial models for the physical values of the of myosin, 
collagen and actin denaturation, and cooking loss.

Factor Denatured myosin [%] Denatured collagen [%] Denatured actin [%] Cooking loss [%]
Intercept 96.27 86.39 17.76 20.32
Temp 2.71*** 17.00*** 24.01*** 2.96**
Hum 2.68*** 3.71*** 6.20*** 0.26
Fan 1.12* 1.71* 4.12*** 2.18*
Temp × Hum −2.56*** −1.40 2.66* −0.10
Temp × Fan −0.66 −1.00 3.31*** −0.75
Hum × Fan −0.56 −0.23 −2.76* −0.10
Temp2 −0.38 −7.75*** 26.44*** 0.67
Hum2 −0.63 0.40 −1.31 0.37
Fan2 0.56 1.00 0.89 −0.43
R2 0.933 0.984 0.997 0.746
Lack of fit 0.261 0.289 0.281 0.081

Temp – Temperature, Hum – Humidity, Fan – Fan rotation speed, R2 – square coefficient of the fitting model, Lack of fit – p-value of lack of fit.
* – Significant at P ≤0.05; ** – Significant at P ≤0.01; *** – Significant at P ≤0.001.

Source: own elaboration.
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Optimisation of heat treatment parameters 
RSM was used to assess the influence of temperature, humidity, and fan speed on the heat treatment of turkey 
breast fillets (Pectoralis major). This modelling technique made it possible to observe trends in the outcomes 
as the independent variables were altered. The regression coefficients outlined in Table 5, along with the 3D plots 
depicted in Figures 3 and 4, demonstrated that all three independent variables exerted a statistically significant 
effect on the denaturation levels of individual proteins, encompassing myosin, collagen, actin, and cooking loss 
in the meat samples. However, the extent of this impact varied depending on the specific response and the level 
of the independent variable.

a) b)

d)c)

Figure 3. �3D surface charts generated using the RSM model at a humidity of 37.5% illustrate the impact of factors and their 
interactions on output data: a – myoglobin denaturation [%], b – collagen denaturation [%], c – actin denaturation 
[%], and d – cooking loss [%]

Source: own elaboration.

The degree of myosin denaturation was significantly influenced by temperature and humidity in linear terms 
(P ≤0.001), with a similar linear effect observed for fan rotation speed (P ≤0.05). However, quadratic effects 
of these parameters were not significant (P >0.05), nor were the interactions involving fan speed with temperature 
or humidity (P >0.05). The strong linear relationship between temperature and myosin denaturation aligns with 
previous studies, indicating that muscle proteins, including myosin, are highly sensitive to heat. High temperatures 
disrupt hydrogen and hydrophobic bonds, leading to structural changes that impact protein functionality 
and digestibility [23]. Similarly, the role of humidity in accelerating denaturation highlights the need for precise 
humidity control during thermal processing to maintain optimal texture and nutritional quality [24]. The observed 
linear effect of fan speed suggests that enhanced air circulation facilitates heat transfer and protein denaturation 
by promoting water evaporation from the meat’s surface [25]. The significant interaction between temperature 
and humidity (P ≤0.001) underscores the necessity of balancing these factors, as low humidity combined with high 
temperatures can adversely affect meat quality [26]. These findings confirm that the primary factors influencing 
myosin denaturation operate in a linear fashion, with a limited impact of more complex interactions.
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Figure 4. Desirability plots and contour graphic solutions of RSM optimisation
Source: own elaboration.

The investigation into collagen denaturation in turkey breast fillets revealed that temperature, humidity, 
and fan rotation speed significantly influenced collagen denaturation in linear terms (P ≤0.001, P ≤0.001, 
P ≤0.05, respectively). Among these, temperature emerged as the most critical factor, with both significant linear 
and quadratic effects (P ≤0.001). Conversely, humidity and air movement speed did not exhibit statistically 
significant quadratic effects (P >0.05). Interaction effects between temperature × fan rotation speed, temperature × 
humidity, and humidity × fan rotation speed were also not statistically significant (P >0.05). These findings align with 
previous studies on myosin denaturation and other muscle proteins, emphasising temperature as the primary driver 
of protein denaturation. For instance, computational fluid dynamics (CFD) simulations in pork and beef confirm 
temperature’s dominant role, while humidity and airflow typically play secondary roles [10, 15]. The quadratic effect 
of temperature reflects the non-linear progression of denaturation at higher temperatures, where collagen breakdown 
becomes more pronounced. Similar trends have been reported in studies on other meats, such as Atlantic salmon, 
where environmental factors like air circulation showed limited interactive effects compared to temperature [18]. 
The results underscore the importance of precise temperature control during meat processing, especially for products 
intended for children and adolescents, where maintaining protein integrity and nutrient retention is critical for 
a healthy diet.

All the analysed factors – temperature, humidity, and fan rotation speed – exhibited statistically significant 
effects on actin denaturation in linear terms (P ≤0.001). Interactions among these factors, such as temperature × 
× humidity and temperature × fan rotation speed, also had significant impacts (P ≤0.05, P ≤0.001, respectively). 
However, humidity and fan speed did not show significant quadratic effects (P > 0.05), whereas temperature 
did (P ≤0.001). Temperature emerged as the most critical parameter, influencing actin denaturation both linearly 
and quadratically (P ≤0.001). Actin, a heat-sensitive protein, begins denaturing around 66°C, with further increases 
in temperature accelerating the process, as confirmed by CFD simulations and studies on other meats. Elevated 
temperatures drive moisture loss and textural changes, aligning with findings on pork loin and other muscle foods 
[10]. Humidity significantly impacted actin denaturation in linear terms, likely due to its role in moisture retention 
within the meat matrix. Although its quadratic effects were negligible, maintaining optimal humidity is essential 
to balance moisture retention with heat for effective denaturation. Fan speed influenced denaturation indirectly, 
primarily through enhanced heat distribution, as shown in the CFD models. However, its effects plateau beyond 
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certain levels, reflecting findings from similar studies [27, 28]. In summary, temperature dominates the dynamics 
of actin denaturation in turkey meat, with humidity and fan speed playing secondary but complementary roles, 
particularly in linear interactions.

The study investigated how temperature, fan speed, and humidity influence cooking loss during the roasting 
of turkey breast fillets. Temperature and fan speed significantly affected cooking loss in a linear manner (P ≤0.01 
and P ≤0.05, respectively), while chamber humidity showed no significant effect (P >0.05). No significant interaction 
effects between temperature, fan speed, and humidity were observed, nor were there significant quadratic effects 
for any factor (P >0.05). Temperature emerged as the dominant factor influencing cooking loss, aligning with 
established research indicating that higher temperatures expedite protein denaturation and collagen shrinkage, 
leading to increased water release and weight loss [29]. Similarly, fan speed’s significant but smaller effect was 
attributed to enhanced surface evaporation, which is consistent with studies demonstrating the role of air velocity 
in drying rates [30]. Interestingly, the lack of a significant impact of humidity (P >0.05) on cooking loss is contrary 
to findings in certain studies, where high humidity environments during roasting have been reported to slow down 
moisture evaporation and reduce overall weight loss [31]. Contrary to some findings, humidity did not mitigate 
weight loss under the tested conditions, possibly due to the specific temperature and fan speed settings. These results 
reinforce the importance of temperature and air circulation in optimising roasting conditions to minimise cooking 
loss while maintaining product quality. Prior studies, such as those by Bıyıklı et al. and Gál et al. [23, 32], corroborate 
that processing temperature and time influence the weight loss, texture, and sensory properties. For example, higher 
temperatures paired with shorter processing times were associated with lower weight losses and improved sensory 
qualities, highlighting the interplay between the thermal conditions and meat characteristics. These findings provide 
valuable insights for designing healthier cooking methods tailored for children and adolescents [23, 32].

Verification of heat treatment parameters 

The final step of the experiment involved validating the results of the RSM model by comparing them with 
laboratory tests. The maximal desirable denaturation of myosin and collagen was determined, while actin 
denaturation and mass loss were minimised. According to the RSM optimisation model, the ideal processing 
conditions for turkey breast meat are a temperature of 161.28°C, humidity of 61.31%, and a fan speed set 
at 17.58 rpm. The predicted values for the output parameters (X̄ ±SD) were as follows: myosin denaturation 
at 99.41 ±1.03%, collagen denaturation at 88.37 ±1.02%, actin denaturation at 20.70 ±0.78%, and cooking loss 
at 18.93 ±0.13%. The results of the optimisation and verification process are presented in Table 6, indicating that 
the laboratory test outcomes were consistent with the predictions of the RSM model. There were no statistically 
significant differences observed between the predicted and laboratory test values. 

Table 6. Verification of the RSM model with laboratory tests (X̄ ±SD)

Design factors Optimum heat treatment parameters
Temperature [°C] 161.28
Humidity [%] 61.31
Fan rotation [RPM] 17.58
Responses Predicted values Laboratory tests values
Myosin denaturation [%] 99.41 ±1.03 99.18 ±0.72
Collagen denaturation [%] 88.37 ±1.02 87.67 ±0.75
Actin denaturation [%] 20.70 ±0.78 19.21 ±0.32
Weight loss [%] 18.93 ±0.13 16.24 ±0.15

*Letters (A, B) show the significant differences between predicted and laboratory tests values (P ≤0.05).

Source: own elaboration.

CONCLUSIONS AND FUTURE PERSPECTIVES 

The work presents the innovative use of the CFD method to predict protein denaturation in turkey breast meat 
and optimise heat treatment processes. Using mathematical models, the optimal thermal treatment conditions were 
determined, which were 161.28°C, 61.31% air humidity, and the fan speed set at 17.58 rpm. The denaturation 
of various proteins and losses during the baking process was assessed. During the verification of the laboratory 
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results, it was found that the denaturation of myosin and actin, as well as the losses during the cooking process, did 
not differ significantly from the values predicted on the basis of the response surface model developed based on 
simulation data. The study proves that the CFD method can be a valuable tool for predicting protein denaturation 
and losses in the cooking process of turkey breast meat, which can improve the quality and efficiency of products 
in the food industry.
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